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Molecular medicine focuses on diagnosis,
treatment, and prevention of injury and disease by
targeting defects at the molecular level. Diagnostic tests,
therapeutics, or prophylactics derived from DNA or
protein sequence information represent major targets in
molecular medicine research. Research in this field is
largely experimental, but systematic experimental
studies are often prohibitively expensive or even not
possible. Computational modeling has emerged as a
convenient technology in support of experimental
research. It is particularly useful in situations when
combinatorial nature of the studied problem requires
thousands or even millions of individual experiments.
Preliminary screening using accurate models of
molecular interactions can identify a small number of
key experiments that are sufficient for completing the
study.

High throughput technologies such as genomics
or proteomics produce large amounts of data of gene
and protein expression (Auffray et al., 2003). The
combinatorial nature of molecular processes, makes
combination of computational modeling and
experimentation necessary for molecular medicine
studies, such as those involving transcriptional
regulation (Beer and Tavazoie, 2004), or antigen
processing and  presentation  (Flower,  2003).
Computational models are useful in biological research
for selection and planning of experiments as well as for
interpretation and understanding the implications of
accumulated data (Brusic and Zeleznikow, 1999).

In this article we discuss the requirements for the
development and use of computational models and
demonstrate the evolution of computational modeling
with the accumulation of knowledge in a given domain.
This will be demonstrated using examples from
identification of immune epitopes that represent targets
for vaccine development.
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REQUIREMENTS FOR BUILDING COMPUTATIONAL
MODELS

For maximum benefit, computer models must be
developed and assessed for performance before use;
this assessment must be done with the same rigor as it
is done with standard laboratory procedures. This
involves due care in testing and validation of
computational models, design of simulated experiments,
and interpretation of results. The best modeling and
computational practices must be applied to the design
and development of computational models. Before use,
computational models must be assessed for relevance,
accuracy, generalization properties, precision, and
robustness. Computer models that are relevant and
accurate can be used to complement laboratory
experimentation and have been termed computational
assays (Brusic and Zeleznikow 1999). Model relevance
refers to the correctness of the assumptions — they must
be in line with current scientific and technical knowledge
related to the studied problem. For example, models
that predict signal peptides cannot be used for
identification of transmembrane regions of proteins.
Several measures of accuracy of prediction models are
known (Bajic, 2000). The commonly used measures are
shown in Table 1.

Generalization properties indicate the ability of a
model to accurately predict new cases and therefore its
practical utility. Poor generalization ability may arise from
a) inadequate data sets used for training, b) inadequate
selection and use of learning algorithm, or ¢) mismatch
of the complexity of model with the that of either the
modeled phenomena or the amount of training data.
When data used for model building are overspecialized,
i.e. represent only a subset of the relevant data, the
model may not be adequate for the intended use. For
example, protein structure models derived for globular
peptides will perform poorly if used for prediction of
structure of transmembrane domains of proteins. Poor
generalization may result from model over-training — a
situation when a model is forced to learn the
peculiarities of the training data set, rather than general
rules. Finally, overly complex models tend to memorize
training examples, but will often not learn general rules.
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An overly simple model will have a limited ability to
learn, resulting in a lower accuracy of predictions.

Table 1. Definition of terms for assessment of the accuracy of
predictive models.

Experimental Experimental

positives negatives

Predicted True positives False positives
positives (TP) (FP)
Predicted False negatives True negatives
negatives (FN) (TN)
Accuracy measure Formula Pairs with
Sensitivity SE=TP/(TP+FN) SP
Specificity SP=TN/(TN+FP) SE
Positive predictive value | PPV=TP/(TP+FP) NPV
Negative predictive value| NPV=TN/(TN+FN) PPV
Acourac Acc=(TP+TN)/ _

Y /(TP+TN+FP+FN)
Aroc Integration of ROC _

curves (Swets, 1988)

CASE STUDY: PREDICTION OF IMMUNE EPITOPES

T cells of the immune system recognise short
peptides, bound by major histocompatibility complex
(MHC) molecules and displayed on the surface of host
cells. These peptides are recognition labels, which
display contents of host cells to T cells of the immune
system. The presence of non-homeostatic (also known
as non-self) peptides is a prerequisite for the initiation of
immune responses. Peptides produced by degradation
of intracellular proteins bind MHC class | molecules.
MHC class |l molecules present peptides on
antigen—presenting cells produced by degradation
proteins of extracellular origin. A major function of
cytotoxic T cells is to recognise (by T—cell receptors) and
destroy infected (e.g. viruses, bacteria), mutated (e.g.
tumor) or foreign (e.g. transplant) cells. The availability
of intracellular proteins and processing pathways
determine a) which peptides are available for
presentation by MHC—class—| pathway, and b) the extent
of subsequent cytotoxic response. Peptides displayed
by MHC class ||l molecules mainly serve to regulate
immune responses; they are crucial for the initiation,
enhancement and suppression of immune responses.
The peptide-binding site of MHC molecules is a cleft
comprising b-sheet supporting a pair of a—helices. A
peptide binds through a network of hydrogen bonds
between the peptide backbone and the cleft, as well as
through interactions between peptide side chains and
specific pockets in the cleft (Madden et al, 1993).
Interaction between peptide and the binding cleft is
mainly through primary and secondary anchors, which
are the positions within peptide that provide strongest
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contribution to binding. For a given MHC molecule only
a limited set of amino acids can act as anchors at a
particular position within a peptide. Anchor positions are
the key for defining common patterns within sets of
peptides that bind a specific MHC molecule. Binding
motifs to more than 200 MHC specificities have been
proposed (Rammensee et al. 1999). These motifs
provide a basis for the development of methods for
predicting peptide binding to MHC molecules. An
example of a binding matif is shown in Table 2. Binding
motifs represent the most basic models of peptide
binding to MHC molecules since they indicate
approximate preference for certain amino acids at
certain positions in peptides that bind a given MHC
molecule. Binding motifs have the lowest accuracy of
reported MHC-binding prediction methods (Yu et al.,
2002).

Table 2. Binding motif for mouse MHC molecule H-2-Kb.
(Rammensee et al., 1999).

Position
112|3|4|5|6|7|8|9
Anchors F L
Y M
|
\Y
Auxiliary anchors Y
Preferred R|{N|P|R T|N
residues | D I | aQ
L E E| K
S K S
A T

Quantitative matrices are refined binding motifs
derived from experimental data. This refinement requires
assessment of contribution to binding of each amino
acid at each position in peptide. Such matrices have
been derived using experimental data. Summing up the
coefficients for amino acids at each position in a peptide
produces a binding score and scores above a specified
threshold represent predicted binders. The matrix for
HLA-DR4 (Hammer et al., 1994) correctly predicted >
70% of both binding and non-binding peptides.
Quantitative matrices are efficient, easy to use and are
more accurate than binding motifs. The interaction
between peptides and MHC molecules are non-linear
(Yu et al., 2002) while matrices and motifs only describe
linear relationships. ANNs are more complex than motif—
or matrix-based models and they require more binding
data for training and the data pre—processing.
Pre—processing involves peptide alignment and
conversion to the format acceptable by the ANN
software. Simple motifs and binding matrices can aid the
peptide pre-processing step. For example, the
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information of primary anchors was used for elimination
of false positives in prediction of peptide binding to
human class Il molecule HLA-DR4 (Brusic et al., 1998).
Hidden Markov models (HMM) use the probabilistic
framework to map the search space onto a set of states.
They can learn generalised probabilistic rules from data
sets. HMMs were applied in prediction of HLA-A2
binding peptides (Mamitsuka, 1998). Another type of
sophisticated classification models, support vector
machines (SVM), have also been used for study of
MHC-binding peptides (Zhao et al., 2003). HMMs and
ANNs have been combined for prediction of
promiscuous MHC-binding peptides and immunological
hot-spots inside antigens (Srinivasan et al.,, 2004).
Molecular modelling encompasses detailed knowledge
of the crystal structure of MHC molecules and of
protein—peptide interactions and has been used for
prediction of peptide binding to MHC molecules
(Schafroth and Floudas, 2004). The accuracy of 3D
molecular models needs to be improved before they can
be used for large-scale new predictions.

CONCLUSION

Computational models are important
complementary methodology to experimental research.
They are particularly useful in fields requiring large
number of experiments due to the combinatorial nature
of underlying systems and processes. In such fields,
computational models evolve with the amount of data
and the accumulation of knowledge. We described the
evolution of computational models used for study of
immune epitopes. The early models, based on binding
motifs, indicated rough regularities in the peptide data
sets. The next generation, binding matrices, represent
linear models that quantify each position in peptide.
They have been superseded by sophisticated non-linear
models using ANNs, HMMs, or SVMs. The models
based on 3D analysis complement the set of
data—driven models. Finally, individual models can be
combined for identification of immunological hot-spots
and promiscuous epitopes, that are the best targets for
vaccine discovery.

BIBLIOGRAPHY

(1

(2

(3]

(4

(5]

(6]

(7

(8]

(9

(10

(11

(12

[13]

(14

[19]

[16]

Auffray C., et al., From functional genomics to systems
biology: concepts and practices. C. R. Biol. 326 (10-11)
(2003) 879-892.

Bajic V.B., Comparing the success of different prediction
software in sequence analysis: a review. Brief. Bioinform.
1(3) (2000) 214-228.

Beer M.A., and Tavazoie S., Predicting gene expression
from sequence. Cell 117(2), (2004) 185-198.

Brusic V. and Zeleznikow J., Computational binding
assays of antigenic peptides. Lett. Pept. Sci. 6 (1999)
313-324.

Brusic V., et al.,, Prediction of MHC class Ill-binding
peptides using an evolutionary algorithm and artificial
neural network. Bioinformatics 14(2) (1998) 121-130.

Cai Y.D., et al., Support vector machines for prediction of
protein signal sequences and their cleavage sites.
Peptides 24(1), 159-161.

Flower D.R., Towards in silico prediction of immunogenic
epitopes. Trends Immunol. 24(12) (2003) 667-674.
Madden D.R., et al, The antigenic identity of
peptide-MHC complexes: a comparison of the
conformations of five viral peptides presented by HLA-A2.
Cell 75(4) (1993) 693-708.

Mamitsuka H., Predicting peptides that bind to MHC
molecules using supervised learning of hidden Markov
models. Proteins 33(4) (1998) 460-474.

Rammensee H.G., et al., SYFPEITHI: database for MHC
ligands and peptide motifs. Immunogenetics. 50(3-4)
(1999) 213219

Schafroth H.D. and Floudas C.A., Predicting peptide
binding to MHC pockets via molecular modeling, implicit
solvation, and global optimization. Proteins. 54(3) (2004)
534-556.

Srinivasan K.N., et al., Prediction of class | T-cell epitopes:
evidence of presence of immunological hot spots inside
antigens. Bioinformatics (2004) (in press).

Swets J.A.,, Measuring the accuracy of diagnostic
systems. Science 240(4857) (1988) 1285-1293.

Yu K, et al., Methods for prediction of peptide binding to
MHC molecules: a comparative study. Mol. Med. 8(3)
(2002) 137-148.

Yuan Z., et al., SVYMim: support vector machines to predict
transmembrane segments. J Comput. Chem. 25(5) (2004)
632-636.

Zhao Y., et al., Application of support vector machines for
T—cell epitopes prediction. Bioinformatics 19(15) (2003)
1978-1984.

81



