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SINGULAR SYSTEM THEORY APPLIED TO
THE EVAPORATOR DYNAMICS OF A ONCE -
THROUGH SUBCRITICAL STEAM GENERATOR:
THE DIFFERENTIAL DISCRETE MATHEMATICAL
MODELING BASED APPROACH

A dynamic thermal-hydraulic mathematical model of the evaporator dynamics
of a once — through sub critical steam generator was derived and presented.
This model allows the investigation of evaporator dynamics including its
transient responses.

The evaporator was considered as part of a three-section (economizer,
evaporator and super-heater) model with time varying phase boundaries and
was described by a set of linearized discrete — difference equations which,
with some other algebraic equations, constituted a closed system of equations
possible for exact computer solution.

This model was derived using the fundamental equations of mass, energy and
momentum balance.

For the first time, a discrete differential approach was applied in order to
investigate such complex, two phase processes.

Namely, this approach allows one to escape from the model of this process
usually described by a set of partial differential equations and enables one,
using this method, to simulate evaporator dynamics in an extraordinarily simple

way.

PROCESS DESCRIPTION

The once - through subcritical steam generator
considered in this analysis is a typical one of those used
in gas—cooled nuclear power plants. It contains a large
number of differently located metal tubes. Some of them
can be treated as counterflow and some as crossflow
heat exchangers. In this paper the latter case is of
particular interest.

The focus of this investigation is a classical steam
generator evaporator with time — varying boundaries. In
that sense, we discuss displacements of the evaporation
beginning and ending coordinate within the formal
construction boundaries of evaporator.

Hot gas (primary coolant) is circulated in such a
manner that it crosses perpendicularly over tube
surfaces, transferring thermal energy from the primary
coolant to the secondary coolant (homogeneous steam
vapour) through the tube walls.

The model of the evaporating zone is based on the
performance of a typical tube, schematically shown in
Figure 1.

The evaporator section contains a water—steam
mixture. To describe its dynamics two cases may be
considered. In the case of complete evaporation, saturated
water enters the evaporator, enters the evaporator tube
and leaves it as saturated steam, Figure 1.
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Figure 1

The exchange of thermal energy results in the
cooling of the hot gas and the production of saturated
steam on the tube side.

Here, the idea of physical discretatization is
extended to the continuous case of a three-section
model of a whole once- through steam generator with
time — varying phase boundaries, first presented in Ray,
Bowman (1976).

Process model adoption

Mode A corresponds to a steady state regime,
containing only boiling water.

Under some — arbitrary disturbance displacements
of the evaporation beginning coordinate (mode A) are
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moved to a new position A’, whereby starting from that
point, a process begins in the evaporating zone.

A typical tube, representing an evaporator with
fixed length, is partitioned into N cells with an
accompanying index', successively possessing greater
volume, which originates because the control volume
under consideration thatis moving through the
evaporator, possesses constant mass.

The length of each cell was allowed to vary with
time.

The non-homogeneous field within every cell is
defined by three modes, as follows:

Two boundary cross sections, denoted by: ()y,
()2 and a central one marked by ()i

In the initial steady state regime, the whole length
of the evaporator zone gave L.

Mode B corresponds to the displacements of the
evaporation ending coordinate defined for the
evaporating zone.

Figure 2 shows evaporating zone as a transfer
element with defined control, disturbance and output
variables.

General assumptions

The fundamental assumption of this paper was
that the distributed parameter process can be
represented by a lumped difference discrete model
using time—varying control volumes.

Moreover, variations of the thermodynamic
properties of the two—phase mixture and the effect of
relative velocity with respect to the moving phase cell
boundaries were encountered in this investigation.

In addition, the following basic assumptionms
were made:

Assumption. Uniform fluid properties over any
cross-section.

Assumption. Uniform and independent heat fluxes
across the tube wall of the evaporator for each cell.

Assumption. The two—phase mixture is always in
the state of thermodynamic equilibrium, so these two
components form a homogeneous mixture. The relative

Dindex denotes the serial number of the cell and increases from
the first cell up to the last one.
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velocity of the vapour phase with respect to the water
phase can be neglected.

Assumption. The pressure drop over the whole
length of the evaporator can also be neglected:

Pi1 () = p(®) = p(t) = const. M

Assumption. The temperature of the saturated
vapour and the temperature of the tube walls are
practically equal.

Assumption. The gas specific heat rate is constant
along the length of the evaporator, e.g.:

qgwk(t) = qu(k—1)(t) = qu(t)- @

Assumption. The heat conduction between the
neighbour cells and throughout the tube wall can be
neglected.

Assumption. There is an infinite thermal
conductivity in the radial and no conductivity in the
longitudinal tube direction.

Assumption. The density and the specific heat of
the tube walls are constant.

Assumption. The evaporator geometric characteristics
are constant and uniform along its length.

The justifications and consequences that follow
from adopted assumptions can be found in Debeljkovié
(1984) and for the sake of brevity are omitted here.

MAIN RESULT

Mathematical model process description

The thermal-hydraulic transients of the evaporator,
as the crucial part of every steam generator, are
essential in the study of the overall system
performances of both nuclear and fossil — fueled power
plants, as well as for design purposes of their
appropriate control units and systems.

The basic model equations were derived from the
integral forms of the fundamental equations of the
conservation of mass, energy and momentum through
the control volume approach.

The closed form of the system equations can be
achieved if the necessary number of algebraic equations
are appended to the basic balance equations.

Development of model equations

The fundamental conservation equations for the
second coolant — two phase mixture for anyz) k-th cell
are as follows?:

d(pel)
dt

Sk & ol
= p1kW1k— PoyWoy — p1kz T Pk Z iy (3)
f at f at
2With the exception of k=1 and k=N.

3t should be emphasised that the expression discrete is used
to underline discretization of the spatial coordinate
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For the evaporator, equations (3-5) represent
equations of mass, energy and momentum conservation
for the k-th cell, being the control volume under
consideration.

The energy equation in the tube wall is as follows:

dOud) 1 1
A, Qgwi— A Quix ©

Addends in the form of sums in the preceding
equations originate from the fact that there exists a
relative velocity of the two phase mixture with respect to
the moving cell boundaries, Figure 1.

dl y
e 2 =L )

pwcw(Ao - AI) T

dle o §
/k—Z/ Z/, ” Zdt Zdt ®)

The Iaw of volume increase of a particular fluid
mass element within the k—th cell is expressed by (7), as
well as the possible non-stationary behaviour of the full
length of the evaporator.

Based on the control volume definition and simple
geometric relationships between neighbour cells
equation (8) follows.

The time constant T, is known as the evaporation
time, and can be found in Profos (1962).

It has been shown, Hebrik (1972), that the heat
transfer coefficients in the boiling regime are usually
very high. The wall temperature is therefore nearly equal
to the steam saturation temperature, so one can have:

dewk dewk %
at dpk y dt

ewk = e1‘k ’ e1‘k = 6z‘k(pk) (9)

The saturation temperature f; can only vary with
pressure.

The thermodynamic equations of state are used to
express the pressure as the function of density and
entalphy:

dpe [Opk) dpx  (Opc| by

P = PP i) [QDkN at * phe), (10)
and can be efficiently used in the evaporation process.

Besides the before-mentioned conservation laws,

Newtonzs second law applied to the control volume
must also be used and is given as:

Quac = A Owic — 95) , Ol = s Wi) (11)
A=d"nj4 . Ay=dmlc, Aox=dymy (12)

=5 O+ Oa) (19

The connection between the physical variables in the
boundary cross sections and the central one is given by
eq. (13).

Egs. (8-8) complete the set of non-linear
differential — discrete equations necessary to describe
the non-stationary behavior of a water-steam mixture in
the evaporator for specific and initial conditions.

Using egs. (9-13), this set of equations can be
simplified and expressed into its general form as follows:

dfj dZ/

q dhe L
pk L dt — 5 P B B Wi W1k,z /,,Z/ (14)

dat M at’ ot 2
k k1
D a2
dpe i
dh I i
Ttk=f2 at’ dt’ t » Proie P (15)

Kkt
--------- Wi, Wi, Z/', Z/j,ek, Qgwk
i j

k k1
D dZ/'

aw, !
T“:f3 at’ dt » Piofi P (16)

T ~

......... Wi, Wik, i"y ZI/
i

k K1
Y Y

j apx

gt =T gt Pe e Z/’ Qo a7

S fe| L= 2 2 (18)

k=1,2,..N. (19

The functions f;, i = 1, 2,...,5 are non-linear.
If one defines the relative deviations of all the
introduced variables in the following manner:
— (k= O
A= 20)
ory

and by defining the control, disturbance and state variables:
AP =1 1), AQgult) = U ®),
Aby(t) =Xo(t),  AWo(t) = Us(t),
X) = [Xia... Xus]',  AWi(t) = Xa(t) @1)
Aho(t) = 21(8), W) = [t Wa]',
ﬁ Aty =Xa(t),  ABK(E) = Zialt)
i

(S|

z() = [z Zk2 ) Z

i

AJ(®) = xs(b),
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and under the assumption that all the conditions
necessary to carry out the linearization, one may obtain
the mathematical model of the evaporation process in
the k—th cell:

Eix®) = Nix(t) — 2Nixi 1 (B) +
+ NiXy je1 (1) + Mt() + Hize(t) @2)

The used superscripts are only used to introduce
adequate notation and do not have any mathematical
meaninig.

It should be noted that the transformation of the
state vector xy in eq. (22) was carried out using the
following relation:

Ok = Oak =201 = Ot @3)

The structure of the matrices defined in eq. (22) is
given as:

n’1‘1 ’711(2 ’711(3 ’711(4 ’711(5 1 911(2 0 e,1(4 e11(5
nl§1 ngz ngs ’724 ngs 921 1 0 954 egs
N,1(= n’§1 ngz ngs nl:§4 ngs , Exk=|0 0 1 el:§4 egs )
n§1 0] nﬁs ’754 ’755 0 0 01 9’25
0 0 0 nk n& 0 0 0ef1
4
0 g 5 00 0 0 00
0 n' nk 00 mi 0 0 Hs
NE=|o ng n3 0 0|, Mc=|0 0], Hc=|0 0
00 0 00 mk, 0 0 My
00 0 00 0 0 00

In a particular case, for k=1, the matrices N2 M,
and Hy assume the following structure:

N? =[0] (25a)
0 3nl, 3nl, 0
m121 3’7;3 3’7122 héz

Mi=l0 8nk|, Hi=|3n}, O (25b)
mln 0 0 h4112
0 O 0 0

with the state space representation of the first cell:
Esxi(t) = Nix; () + Myu() + Hyz(t) (26)

Particular expressions for the matrix elements are
given in Debeljkovic (2002, 2004), and are of some
interest here.

If one defines the control, disturbance, output and
state variables for the whole process occurring in
evaporator:

X =[x1 X .. xn],
uid =luw ul’, 2=z Zel @7)
X,'(t)z[0000X,'51...0000...X,'1N 0 Xpy Xian O]T

the matrix model should be in the following form:

30

Ex(t) = Nx(t) + N x1y(H) + Mu(t) + Hz(t) , 28)
y®) =Cz(), @9)
where:

E =diag {E,, E,,..., En},
M=[M;|M]| ... |My]",
H=[Hi|Hz| ... |Hn 1",
C=diag{Cy Cs,....Cn},
N+ =diag { O, N3, ... ,NZ },
Ci=[0], =28, ..N-1

N OO0 LO O
N5 NbO LO ©
N={0 N3O LO O (30)
M MMOMM
0 0 N L NN

Ay

|
OO OO0
OO OO0
OO OO0
OO OO0
- OO0

10000
00000
, G4=|00100|,
00010
00000

CONCLUSION

The evaporator under consideration was
considered as part of a once — through steam generator
defined by a three—section (economizer, evaporator and
super-heater) model with time varying phase
boundaries.

In order to avoid partial differential equations,
which are usually used to describe such distributed
parameter processes, the method of physical
discretatization was introduced, defining for the first time
the concept of a time varying cell leading to the state
space representation in the form of a set of linearized
discrete — difference equations which, with some other
algebraic equations, constitutes a closed system of
equations that allow an exact computer solution.

Some difficulties can arise in the circumstances
when the matrix in eq. (24) or (26) may be singular.

Such cases can be treated in a particular way,
based on different approaches developed for such a
class of so called singular systems, Debeljkovic (2004).

SIMULATION RESULTS AND DISCUSSION

The steady state performances of the linearized
differential — difference dynamic model were tested at 10
percent rated conditions.

Some results of the evaporator simulation are
presented in the form of curves representing transient
responses of the single output variable — displacement
of ending evaporation coordinate at the rated conditions
for independent step increases in two different input
variables. In each case, the input variable under study was
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perturbed from its operating point by a 5-percent step
increase, with the other input variable held constant.

Figure 3 presents the process transient response
for a step increase in a gas specific heat flow rate.

Figure 4 shows the process transient response for
a step increase in a boiling water mass flow rate.

SOME BASIC FACTS ON SINGULAR PROCESSES

Singular processes (systems) are those the
dynamics of which are governed by a mixture of
algebraic and differential equations.In that sense the
algebrac equations represent the constraints to the
solution of the differential part.

These systems are also known as a descriptor and
semi-state and arise naturally as a linear approximation
of systems models, or linear system models in many
applications such as electrical networks, aircraft
dynamics, neutral delay systems, chemical, thermal and
diffusion processes, large—scale systems,
interconnected systems, economics, optimization
problems, feedback systems, robotics, biology, etc.

The complex nature of the generalized state space
systems causes many difficultes in analytical and
numerical treatment that do not appear when systems in
the normal form are considered. In this sense questions
of existence, solvability, uniqueness, and smoothness

are present which must be solved in a satisfactory
manner.

A short and concise, acceptable and
understandable explanation of all these questions may
be found in the papers of Debeljkovic (2004).

Consider a linear singular process represented by:

Ex(t) =Ax(®) , X(fo) =Xo ,

y(®) = Cx(t) (31)
and

Ex(t) =Ax(t) + Bu®®), x(to) =%

y(®) = Cx(t) (32)

with the matrix £ possibly singular, where x(t) € R" is a
generalized state-space vector, u(t) € R" is a control
variable, and y(t) € R".

The matrtices E, A € ™", B ¢ R™" and C € R™"
are of the appropriate dimensions and are defined over
the field of real numbers.

The system given by eq. (31) is operatinig in a free
and system given by eq. (32) is operating in a forced
regime, i.e. some external force is applied on it. It should
be stressed that, in the general case, the initial
conditions for an autonomous and a system operating in
the forced regime need not be the same.

System models of this form have some important
advantages in comparison with models in the normal
form, e.g. when E = | and an appropriate discussion can
be found in Debeljkovic et al. (1996, 1996a, 1998, 2004,
2005), Debeljkovi¢ (2004).

Egs. (81-32) arise naturally in the process of
modeling various physical systems, when the equations
are written in the sparse form.

They have some important advantages in
comparison with models in the normal form, Baji¢
(1992):

¢ the models preserve the sparsity of the system
matrices

e there is a tight relation between the system
physical variables and the variables in these models,

e the structure of the physical system is well
reflected in the models,

o there is a great simplicity in the derivation of egs.
(81-32) and in this connection there is no necessity for
the elimination of the unwanted (redundant) variables,
as there is no request to build the models in the
traditional form.

Models of the mentioned forms can be found in
many different fields.

The Laplace transformaion of the system, given by
eg. (82), under zero conditions, results in the following
generalized transfer function matrix:

adj (SE-A) B 43
detE_AE €3
a transfer matrix of a singular system, with the
characteristic equation of the form:

fe(s) = det (sE - A). B4

WEs)=C((E-AY' B=C
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It can be shown that the transfer function of linear
singular systems, in certain circumstances, can not be
found. This problem is completely determined by the
question of the possible solvability of a singular system,
see Debeljkovi¢ (2004).

From eq. (83), it is obvious that only a regular
singular system can have such a description.

If a singular system has no transfer function, i.e. it
is irregular, it may still have a general description pairing,
Dziurla, Newcomb (1987), that is a description of the
form:

R(s) Y(s) = Q(s) UGs) (35)
where Y(s) and U(s) are Laplace transforms of the
output and input, respectively. Since, irregular systems
may have many or no solutions at all, the question
arises as to whether we would meet them in practice.

Th mentioned reference shows that we indeed
meet them, at least when we idealize certain systems.

Other aspects, concerning the solvability and state
structure for irregular singular systems can be found in
Dai (1989.a).

A practical and compact procedure for obtaining
the transfer function of linear singular systems,
especially for high order systems, is not based on eq
(81), but some specific procedures based on a finite —
series expansion for (SE — A)™.

The singular system is regular, when the matrix
pencil (CE —A) is regular, i.e.

dc € R : det (cE - A) =0, (36)

and then solutions of eq. (81) exist, they are unique and
for so—called consistent initial conditions generate
smooth solutions. Moreover, the closed form of this
solution is known, Dai (1989.b).

In some circumstances, it is useful to introduce the
linear non-singular transformation of a system governed
by eq. (88), in order to obtain the first canonical form of
a linear singular system, as:

X(t) = A % (B) + Az Xo(1) @7
0 =Ax () +A:() (38)

The regularity condition (36) from the system given
by egs. (37-38) reduces to the following:

sl -A, A

As A )T

which is equivalent to:
det (sf —A;) det (<A, -As (s/ —As) 'An) 20, (40)

det 0, 39)

or:
det A, det ((s/—Ap) — A A7 As) #0, 41)
Instead of eq. (36), one can verify the following
condition, Campbell (1980).
RA) N N(E) = {0}, (42)
i.e. N(A) and N(E) have only a trivial intersection where
N(-) denotes the null space or kernel of matrix (-).

Owens and Debeljkovic (1985) showed that eq.
(42) is equivalent to:

Wi n N(E) = {0}, (43)
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W, being the subspace of consistent initial conditions.

Alternative characterizations of the regularity
condition offered by other authors are also presented in
the current literature.
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